MATEMÁTICA I

CÓDIGO: 0234

PROFESOR/A RESPONSABLE: Gelonch Anyé, José

OTRO PROFESORADO:

Bailo Ballarín, Esteban Cecilia Averós, Juan Giné Mesa, Jaume

DEPARTAMENTO: Matemàtica

CRÉDITOS: 3 T + 1.5 P **CUATRIMESTRE:** 1

OFERTADA COMO LIBRE ELECCIÓN: NO

CO-REQUISITOS

ES CO-REQUISITO DE

0235 Matemática II

TITULACIONES DONDE SE IMPARTEN LA ASIGNATURA:

Ing. Técnica en Explotaciones Agropecuarias – TR

Ing. Técnica en Explotaciones Forestales - TR

Ing. Técnica en Hortofruticultura y Jardinería - TR

Ing. Técnica en Industrias Agrarias y Alimentarías - TR

Ing. Técnica en Industrias Forestales – TR

Ing. Técnica en Mecanización y Construcciones Rurales - TR

OBJETIVOS

- 1.- Definición de la estructura del espacio vectorial y aplicaciones lineales, hasta llegar a la diagonalización de endomorfismos.
- 2.- Ampliación del cálculo en una variable.

METODOLOGÍA

El número de estudiantes impone la clase magistral, tanto en la parte de teoría como en la de prácticas.

PROGRAMA/TEMARIO

PARTE I: ÁLGEBRA

TEMA 1: ESPACIOS VECTORIALES. SUBESPACIOS.

Definición. Ejemplos. Propiedades que se deducen de la definición.

Combinación lineal. Dependencia e independencia lineal.

Conjunto generador. Espacio finito generador. Bases. Existencia de bases en los espacios finitos generados.

Teoremas sobre generación y bases. Dimensión. Cambio de base.

Subespacios. Subespacio engendrado. Dimensión de un espacio. Operaciones con subespacios: intersección y suma: suma directa.

TEMA 2: APLICACIONES LINEALES.

Definición y propiedades. Monomorfismo, epimorfismo, isomorfismo.

Núcleo e imagen. Caracterizaciones de las aplicaciones lineales según el núcleo y la imagen. Antiimagen.

Imagen y antiimagen de un subespacio.

Bases y aplicaciones lineales. Rango. Operaciones.

TEMA 3: MATRICES Y APLICACIONES LINEALES.

Definición de matriz. Tipos de matrices. Operaciones.

Matriz asociada a una familia de vectores.

Rango de una matriz. Transformaciones elementales.

Transposición: matrices simétricas y antisimétricas.

Matrices invertibles: cálculo de la matriz inversa por transformaciones elementales.

Matriz de una aplicación lineal.

Matriz de cambio de base. Cambio de base en aplicaciones lineales.

Matriz de la composición.

TEMA 4. DIAGONALIZACIÓN DE MATRICES Y ENDOFORMISMOS.

Polinomios de matrices. Polinomio característico. Teorema de Cayley-Hamilton.

Valores propios y vectores propios. Subespacios propios. Cálculo de los valores propios. Cálculo de los vectores propios.

Diagonalización. Teorema fundamental de diagonalización.

Aplicaciones de la diagonalización.

PARTE II: CÁLCULO.

TEMA 5: SUCESIONES.

Definición y ejemplos.

Límite de una sucesión. Sucesiones convergentes. Propiedades.

Sucesiones regulares. Algunos criterios de convergencia y cálculo de límites.

Sucesiones equivalentes.

TEMA 6. SERIES.

Concepto y notaciones. Series convergentes. Teorema de Cauchy. Condición necesaria de convergencia. Criterios de comparación.

La serie geométrica. Criterio de compactación. Series de Riemann.

Series de términos positivos: criterios de convergencia.

Convergencia absoluta. Series alternadas. Cálculo de la suma de algunas series.

Series enteras: radio y campo de convergencia.

TEMA 7. FUNCIONES: LÍMITE Y CONTINUIDAD.

Concepto de función. Dominio y recorrido. Funciones monótonas, operaciones con funciones. Componentes de una función vectorial.

Límite de una función en un punto: unicidad. Límite por sucesiones, límites direccionales. Operaciones y límites. Límites infinitos y en el infinito. Cálculo de límites. Formas indeterminadas.

Función continua en un punto y en un conjunto. Reducción al caso real. Propiedades de las funciones continuas.

PALABRAS CLAVE

Espacios vectoriales, subespacios vectoriales, aplicaciones lineales, diagonalización, sucesiones, series, continuidad.

SISTEMA DE EVALUACIÓN

Examen final dividido en dos parte. La primera, compuesta de cuestiones teóricoprácticas, es un 40% de la nota final. La segunda, compuesta por problemas, con el 60% restante.

BIBLIOGRAFÍA BÁSICA

ESPADA, E. – 1983 – Problemas resueltos de álgebra (2 volúmenes) – Eunibar

LANG, S. – 1990 – Introducción al álgebra lineal. Addison Wesley Iberoamericana.

PUERTA, F. – 1990 – Álgebra lineal – Centre de Publicacions d'abast (CPDA)

ROJO, J. – 1986 – Álgebra lineal – AC

De BURGOS, J. - - Álgebra lineal. McGraw-Hill

PROSKURIAKOV, I. – 1986 – Problemas de álgebra lineal. Mir

ROJO, J.; MARTIN, I. – 1989 – Ejercicios y problemas de álgebra lineal. Vector Ediciones.

BARTLE, R.G.; SHERBERT, D.R. - - Introducción al análisis matemático de una variable. LIMUSA

JARAUTA, E. - - Análisis matemática d'una variable. UPC

STEIN, S.K. - - Cálculo y geometría analítica – McGraw-Hill

AYRES, F. - - Cálculo diferencial e integral - McGraw-Hill

DEMIDOVICH, D. - - Problemas y ejercicios de análisis matemático - Paraninfo

SPIEGEL, M.R. - - Cálculo superior - McGraw-Hill

BIBLIOGRAFÍA COMPLEMENTARIA

LENTIN, A.; RIVAUS, J. – 1982 – Álgebra moderna. Aguilar

QUEYSANNE, M. – 1971 – Álgebra básica – Vicenç Vives

SÁINZ, M.A.; SERRARLOS, J.L.; PÉREZ, A.M. - 1990 – Álgebra – POLITEC

LANG, S. - - Cálculo – Addison - Wesley Iberoamericana.

LARSON, R.E.; HOSTETLER, R.P. - - Cálculo y geometría analítica - McGraw-Hill

SPIVAK, M - - Calculus - Cálculo infinitesimal (2 vols) - Reverté